

Spin-off of the University of Catania

First Person (Egocentric) Vision: History and Applications

Francesco Ragusa

First Person Vision@Image Processing Laboratory - http://iplab.dmi.unict.it/fpv

Next Vision - http://www.nextvisionlab.it/

Department of Mathematics and Computer Science - University of Catania

francesco.ragusa@unict.it - https://francescoragusa.github.io/

- 1) Part I: History and motivations [09.00 10.30]
 - a) Agenda of the tutorial;
 - b) Definitions, motivations, history and research trends of First Person (egocentric) Vision;
 - c) Seminal works in First Person (Egocentric) Vision;
 - d) Differences between Third Person and First Person Vision;
 - e) First Person Vision datasets;
 - f) Wearable devices to acquire/process first person visual data;
 - g) Main research trends in First Person (Egocentric) Vision;

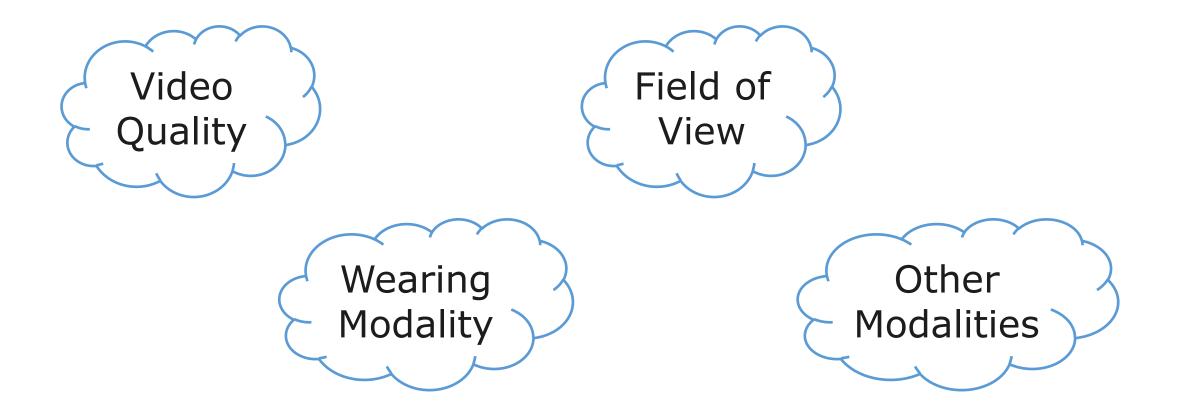
Coffee Break [10.30 – 10.45]

Keynote presentation: Gerhard Rigoll [10.45 – 12.00]

1) Part II: Fundamental tasks for First Person Vision systems [12.00 – 13.00]

- a) Localization;
- b) Hand/Object Detection;
- c) Action/Activity Recognition;
- d) Egocentric Human-Object Interaction;
- e) Anticipation;
- f) Industrial Applications;
- g) Conclusion.

The slides of this tutorial are available online at: <u>https://francescoragusa.github.io/visigrapp2024</u>



Part II

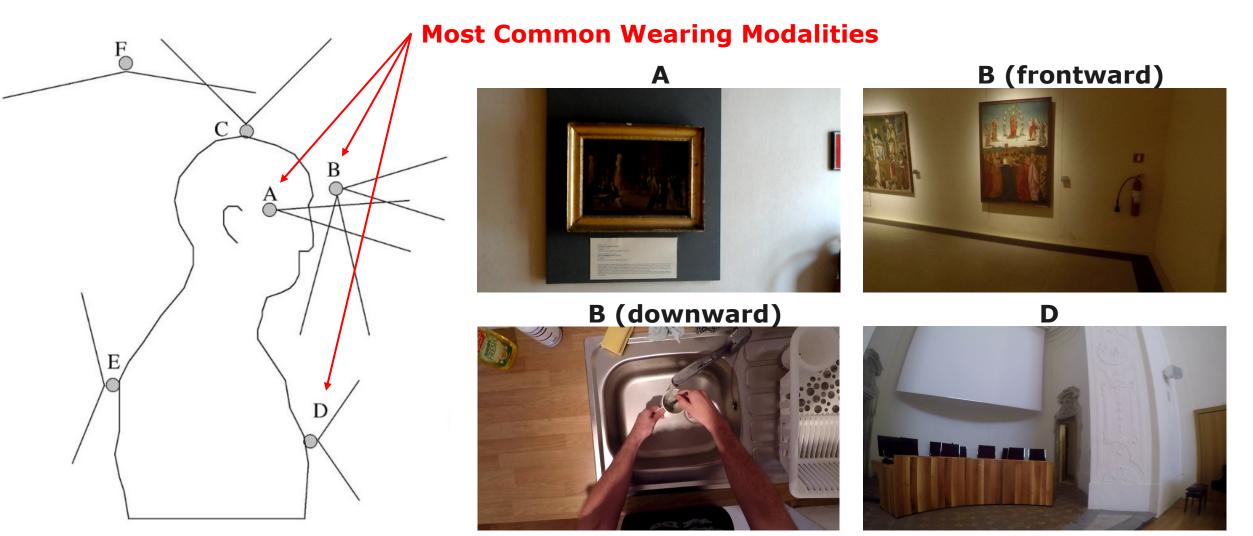
Fundamental Tasks for First Person Vision Systems

Four things to pay attention to when collecting first person visual data

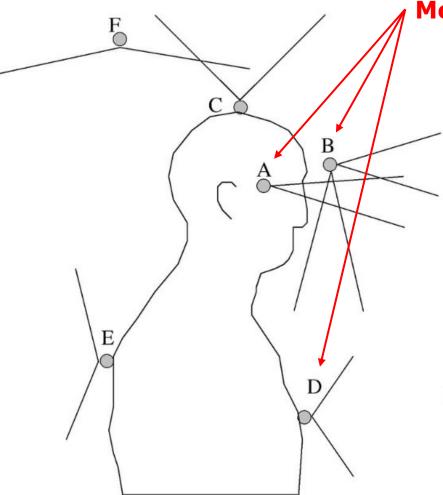
Università di Catania Data Acquisition – Video Quality

- Try to get a high quality camera to get high quality images!
- Egocentric video is subject to motion blur and exposure issues.

High Quality Video Obtained with a GoPro



Average Quality Video



Università di Catania Data Acquisition – Camera Wearing Modalities

<u>A,B</u>: head mounted, <u>D</u>: chest mounted

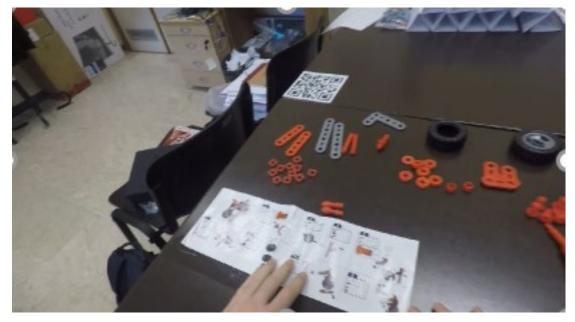
Mayol-Cuevas, W. W., Tordoff, B. J., & Murray, D. W. (2009). On the choice and placement of wearable vision sensors. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 39*(2), 414-425.

Most Common Wearing Modalities

- A-B are best to capture objects:
 - A, B (frontward) to capture objects in front of the subjects (e.g., paintings in a museum);
 - B (downward) to capture objects manipulated with hands (e.g., kitchen);
- Chest-mounted cameras (D) are less obtrusive and give stable video, but they may miss details on what the user is looking at;

Mayol-Cuevas, W. W., Tordoff, B. J., & Murray, D. W. (2009). On the choice and placement of wearable vision sensors. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 39*(2), 414-425.

Università Data Acquisition – Field of View (FOV)


A wide FOV allows to capture more scene but it may introduce distortion

Narrow Angle

Wide Angle

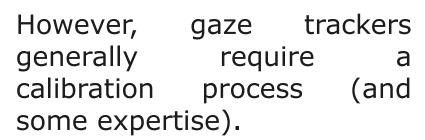


 Depth can improve scene understanding by highlighting the position of objects and hands;

Wan, S., & Aggarwal, J. K. (2015). Mining discriminative states of hands and objects to recognize egocentric actions with a wearable RGBD camera. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops* (pp. 36-43).

https://github.com/microsoft/HoloLensForCV

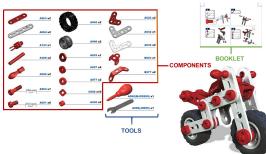
- Microsoft


 HoloLens has a
 «Research
 Mode» which
 allows to
 access:
 - short-range depth
 - long-range depth;
 - IR reflectivity;

Microsoft HoloLens Research Mode

https://docs.microsoft.com/en-us/windows/mixed-reality/research-mode

Gaze can give information on what the user is paying attention to.



F. Ragusa, A. Furnari, S. Livatino, G. M. Farinella. The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain. WACV 2021 (ORAL) (<u>https://arxiv.org/abs/2010.05654</u>).

MECCANO

HOI4D: A 4D Egocentric Dataset for Category-Level Human-Object Interaction

Plizzari, C., Goletto, G., Furnari, A., Bansal, S., Ragusa, F., Farinella, G. M., Damen., D. & Tommasi, T. (2023). An Outlook into the Future of Egocentric Vision. *arXiv preprint arXiv:2308.07123*. And More

di Catania **Datasets (non-exhaustive)**

Dataset	URL	Settings	Annotations	Goal
EGO-EXO4D	https://ego-exo4d-data.org/	839 participants performing procedural and physical activities.	Natural language descriptions, segmentation masks, temporal segments of keysteps, task-graphs, profiency labels, 3D human pose	Keystep Recognition, Proficiency Estimation, Relation, Pose Estimation
EGO4D	https://ego4d-data.org/	931 participants performing different activities in different domains.	Different temporal and spatial annotations related to 5 benchmarks	Episodic Memory, Hand- Object Interaction, Audio-Visual Diarization, Social Interactions, Forecasting
EPIC-KITCHENS-100	https://epic-kitchens.github.io/2020- 100	Subjects performing unscripted actions in their native kitchens.	Temporal segments	Action recognition, detection, anticipation, retrieval.
MECCANO	https://iplab.dmi.unict.it/MECCANO/	20 subjects assembling a toy motorbike.	Temporal segments, active objects, human- object interactions	Action recognition, Active object detection, Egocentric Human- Object Interaction Detection
ASSEMBLY101	https://assembly-101.github.io/	53 subjects assembling in a cage settings 101 children's toys.	Temporal segments, 3D hand poses	Action recognition, Action Anticipation, Temporal Segmentation

Dataset	URL	Settings	Annotations	Goal
ENIGMA-51		Participants performing procedural activities in	Textual procedures, Hand and Object annotations, human- object interactions, next-object interactions	Untrimmed temporal annotations of human- object interactions, Egocentric Human-object interactions, short-term object interaction anticipation, NLU of intents and entities
HOLOASSIST		collaboratively	Action and conversational annotations	Action recognition and anticipation, mistake detection, inervention type prediction, 3D hand pose forecasting
ARIA Digital Twin	https://www.projectaria.com/datase ts/adt/			

di Catania **Datasets (non-exhaustive)**

Dataset	URL	Settings	Annotations	Goal
EPIC-KITCHENS 2018	https://epic-kitchens.github.io/2018	32 subjects performing unscripted actions in their native environments	action segments, object annotations	Action recognition, Action Anticipation, Object Detection
Charade-Ego	Intros://allenal.org/plato/charades/	paired first-third person videos	action classes	Action recognition
EGTEA Gaze+	http://ai.stanford.edu/~alireza/GTE A/	32 subjects, 86 sessions, 28 hours	action segments, gaze, hand masks	Understading daily activities, action recognition
ADL	iav/papers/ADLdataset/	20 subjects performing daily activities in their native environments	activity segments, objects	Detecting activities of daily living
CMU kitchen	http://www.cs.cmu.edu/~espriggs/ cmu-mmac/annotations/	multimodal, 18 subjects cooking 5 different recipes: brownies, eggs, pizza, salad, sandwiche	action segments	Understading daily activities
EgoSeg	http://www.vision.huji.ac.il/egoseg/	Long term actions (walking, running, driving, etc.)	long term activity	Temporal Segmentation, Indexing

Dataset	URL	Settings	Annotations	Goal
First-Person Social Interactions	http://al_stanford_edu/~alireza/Disnev/	8 subjects at disneyworld		Recognizing social interactions
UEC Dataset	<u>http://www.cs.cmu.edu/~kkitani/datase</u> <u>ts/</u>	two choreographed datasets with different egoactions (walk, jump, climb, etc.) + 6 youtube sports videos	activities	Unsupervised activity recognition
JPL	http://michaelryoo.com/jpl- interaction.html	Interaction with a robot	·	Interaction recognition/prediction
Multimodal Egocentric Activity Dataset	http://people.sutd.edu.sg/~1000892/da taset	-	activity (walking, elevator, etc.)	Life-logging
LENA: An egocentric video database of visual lifelog	<u>http://people.sutd.edu.sg/~1000892/da</u> <u>taset</u>	13 activities performed by 10 subjects (Google Glass)	activity (walking, elevator, etc.)	Life-logging

Dataset	URL	Settings	Annotations	Goal
FPPA	lion.ntml	Five subjects performing 5 daily actions	activity (drinking water, putting on clothes, etc.)	Temporal prediction
	nttp://vision.cs.utexas.edu/projects/egoce ntric/index.html	3-5 hours long videos capturing a person's day	important regions	Summarization
IVINSL/ VISUAL DIARIES	http://www.csc.kth.se/cvap/vinst/NovEgo Motion.html	31 videos capturing the visual experience of a subject walkin from metro station to work	location id, novel egomotion	Novelty detection
Bristol Egocentric Object Interaction (BEOID)	//www.cs.bris.ac.uk/~damen/BEOID	8 subjects, six locations. Interaction with objects and environment	interaction (pick, plug,	Provide assistance on object usage
		57 sequences of 55 subjects on search and retrieval tasks	gaze	gaze prediction

Dataset	URL	Settings	Annotations	Goal
UNICT-VEDI	http://iplab.dmi.unict.it/VEDI/	different subjects visiting a museum	location, observed	localizing visitors of a museum and estimating their attention
UNICT-VEDI-POI		different subjects	object bounding boxes annotations, observed objects	recognizing points of interest observed by the visitors
Simulated Egocentric Navigations	http://iplab.dmi.unict.it/SimulatedEgoc	simulated navigations of a virtual agent within a large building	3-DOF pose of the agent in each image	egocentric localization
EgoCart		collected by a shopping	3-DOF pose of the shopping cart in each image	egocentric localization
Unsupervised Segmentation of Daily Livign Activities	<u>http://iplab.dmi.unict.it/dailylivingactivi ties</u>	egocentric videos of daily activities	activities	unsupervised segmentation with respect to the activities

Dataset	URL	Settings	Annotations	Goal
Visual Market Basket Analysis	Visual Market Basket Analysis http://iplab.dmi.unict.it/vmba/		class-location of each image	egocentric localization
Location Based Segmentation of Egocentric Videos	http://iplab.dmi.unict.it/PersonalLoc ationSegmentation/	egocentric videos of daily activities	location classes	egocentric localization, video indexing
Recognition of Personal Locations from Egocentric Videos	Intth://inlah.dml linict it/Personall oc	egocentric videos clips of daily activities	location classes	recognizing personal locations
EgoGesture	http://www.nlpr.ia.ac.cn/iva/yfzhang	2k videos from 50 subjects performing 83 gestures	Gesture labels, depth	Gesture recognition
EgoHands	http://vision.soic.indiana.edu/project	48 videos of interactions between two people	Hand segmentation masks	Egocentric hand segmentation
DoMSEV	http://www.verlab.dcc.utmg.br/sem	80 hours/different activities	Scene/Action labels with IMU, GPS mad depth	Summarization

Dataset	URL	Settings	Annotations	Goal
EGO-HPE	http://imagelab.ing.unimore.it/imag elab2015/researchactivity.asp?idAtti vita=23	Egocentric videos for head pose estimation	Head pose of the subjects	Head-pose estimation
EGO-GROUP	http://imagelab.ing.unimore.it/imag elab2015/researchactivity.asp?idAtti vita=23		Social relationships	Understanding social relationships
DR(eye)VE	http://aimagelab.ing.unimore.it/drey eve	74 videos of people driving	Eye fixations	Autonomous and assisted driving
THU-READ	http://ivg.au.tsinghua.edu.cn/datase t/THU_READ.php	8 subjects performing 40 actions with a head- mounted RGBD camera	•	RGBD egocentric action recognition
		70 subjects visiting two	Temporal segments,	Room-basd localization,
		cultural sites in Sicily,	room-based	Object detection,
EGO-CH	https://iplab.dmi.unict.it/EGO-CH/	Italy.	localization, objects	Behavioral analysis

Università Fundamental Tasks

12 Egocentric Vision Research Tasks

- 1. Localisation
- 2. 3D Scene Understanding
- 3. Anticipation
- 4. Action Recognition
- 5. Gaze Understanding and Prediction
- 6. Social Behaviour Understanding
- 7. Full Body Pose Estimation
- 8. Hand and Hand-Object Interactions
- 9. Person Identification
- 10. Privacy
- 11. Summarisation
- 12. Visual Question Answering

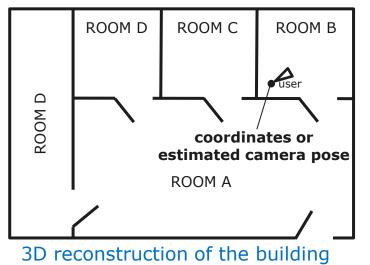
Plizzari, C., Goletto, G., Furnari, A., Bansal, S., Ragusa, F., Farinella, G. M., Damen., D. & Tommasi, T. (2023). An Outlook into the Future of Egocentric Vision. *arXiv preprint arXiv:2308.07123*.

Università Fundamental Tasks

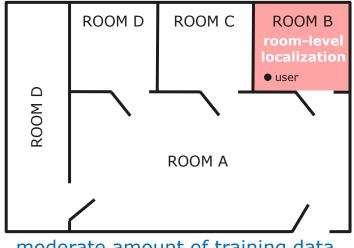
12 Egocentric Vision Research Tasks

- 1. Localisation
- 2. 3D Scene Understanding
- 3. Anticipation
- 4. Action Recognition
- 5. Gaze Understanding and Prediction
- 6. Social Behaviour Understanding
- 7. Full Body Pose Estimation
- 8. Hand and Hand-Object Interactions
- 9. Person Identification
- 10. Privacy
- 11. Summarisation
- 12. Visual Question Answering

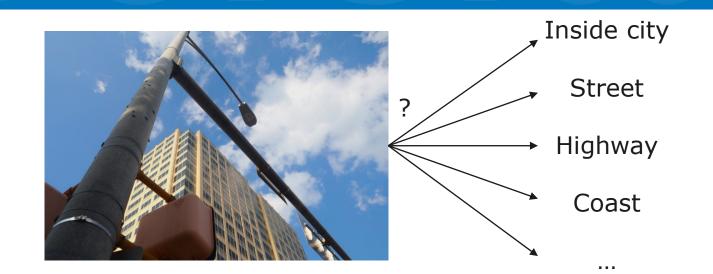
Plizzari, C., Goletto, G., Furnari, A., Bansal, S., Ragusa, F., Farinella, G. M., Damen., D. & Tommasi, T. (2023). An Outlook into the Future of Egocentric Vision. *arXiv preprint arXiv:2308.07123*.


Localization

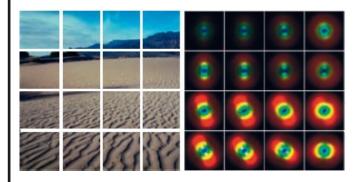
Università di Catania Localization – Levels of Granularity


off-the-shelf detectors

CAMERA POSE-ESTIMATION


ROOM-LEVEL RECOGNITION

moderate amount of training data



- The most basic form of localization;
- Tells what kind of scene the user is in;
- Useful to distinguish between (even for unseen places) :
 - indoor/outdoor
 - natural/artificial
 - conf. room
 - Office
- Can use off-theshelf detections.

COMPUTATIONALLY INEXPENSIVE ALGORITHMS

GIST Descriptor

Oliva, Aude, and Antonio Torralba. "Modeling the shape of the scene: A holistic representation of the spatial envelope." International journal of computer vision 42.3 (2001): 145-175.

DCT-GIST (runs on the IGP pipeline)

		I.	ш	п	Ш	Ш	Ш
-	<i>.</i>	Α.	N	Μ.	W	M	W
-		Ο.	00	00	000	000	W
=	5	8	98	<u>82</u>	935	888	1001
=	2	8	83	- 88	88	888	
		8	88	88	88	88	
		8	83	88			
		8	88	88			

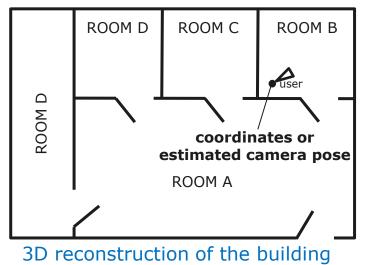
G. M. Farinella, D. Ravì, V. Tomaselli, M. Guarnera, S. Battiato, *"Representing scenes for real-time context classification on mobile devices"*, Pattern Recognition, Elsevier, ISSN 0031-3203, Vol. 48, N. 4, pp. 1082-1096, doi: 10.1016/j.patcog.2014.05.014, 2015

DATA & CODE HERE -> <u>http://places2.csail.mit.edu/</u>

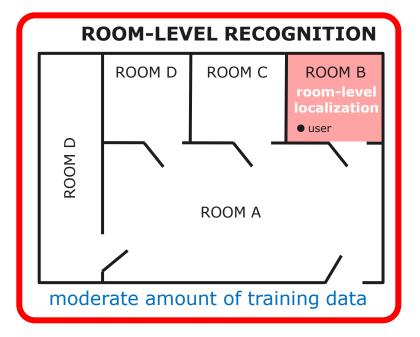
GT: cafeteria top-1: cafeteria (0.179) top-2: restaurant (0.167) top-3: dining hall (0.091) top-4: coffee shop (0.086) top-5: restaurant patio (0.080)

- Places is a large (10M images 400+ classes) dataset for scene recognition;
- CNN models trained to recognize 365 scene classes available for download;
- Can be used off-the-shelf!

A 10 million Image Database for Scene Recognition B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017

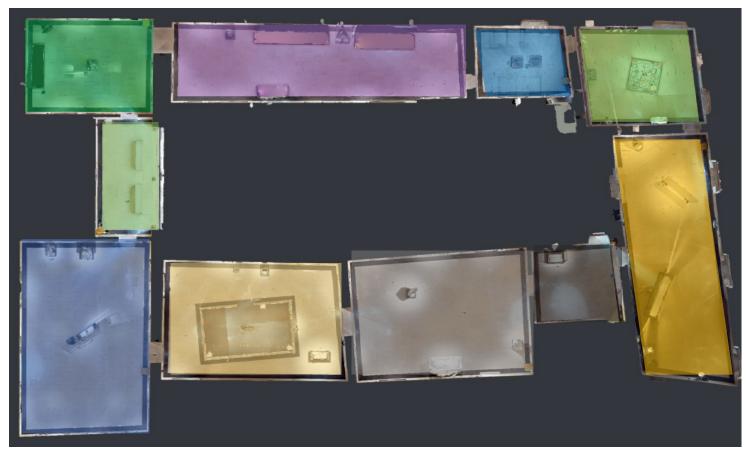

Università di Catania Localization – Levels of Granularity

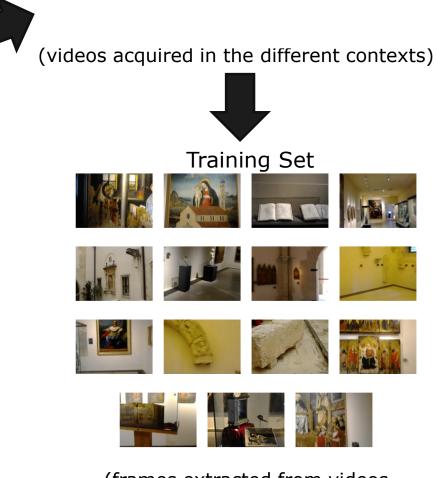
SCENE RECOGNITION



off-the-shelf detectors

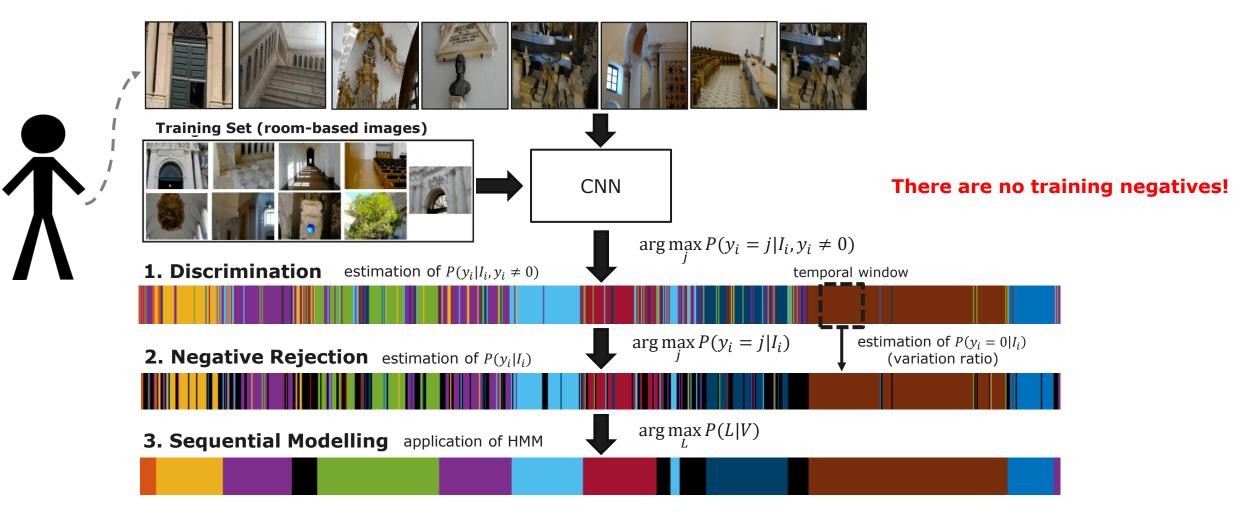
CAMERA POSE-ESTIMATION





Università Room-Level Localization – Museums

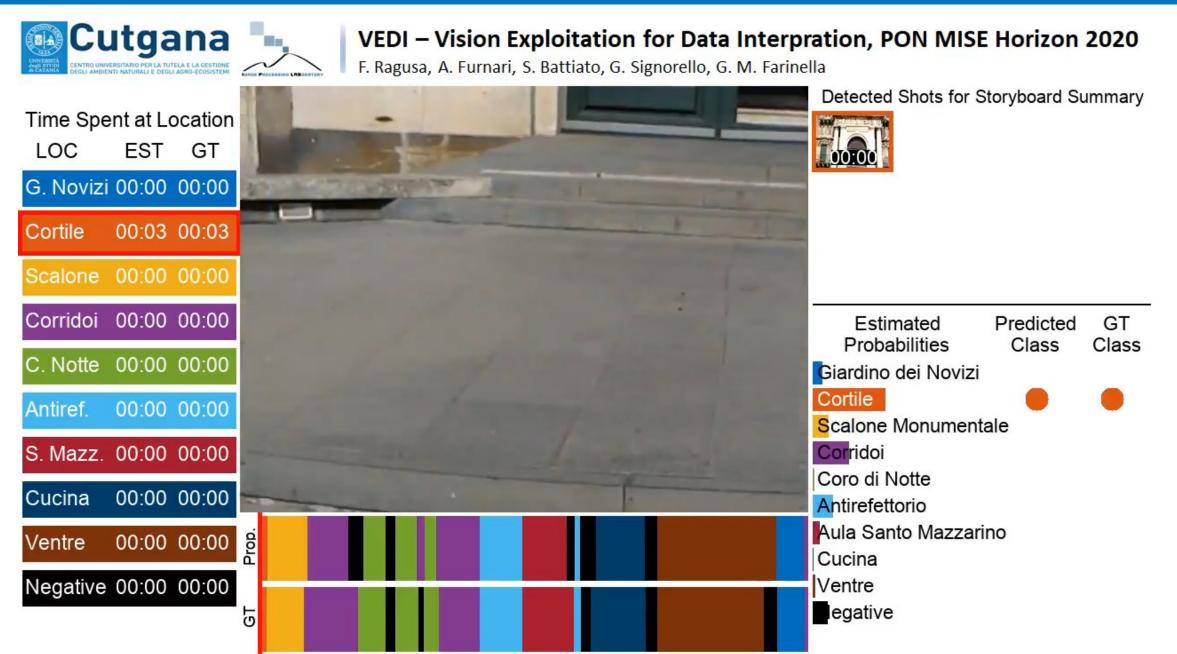
Cultural Site (e.g., museum) divided into contexts (e.g., rooms)


(frames extracted from videos acquired in the different contexts)

F. Ragusa, A. Furnari, S. Battiato, G. Signorello, G. M. Farinella (2020). EGO-CH: Dataset and Fundamental Tasks for Visitors Behavioral Understanding using Egocentric Vision . Pattern Recognition Letters.

Università di Catania Room-Level Localization – Full Model

CODE HERE -> https://iplab.dmi.unict.it/VEDI/

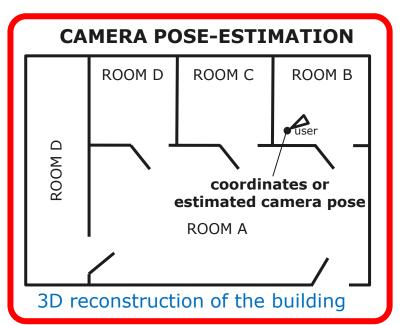

https://iplab.dmi.unict.it/PersonalLocationSegmentation/

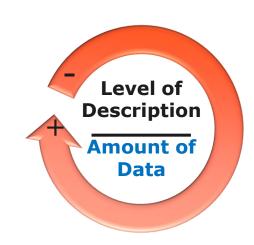

A. Furnari, G. M. Farinella, S. Battiato, Personal-Location-Based Temporal Segmentation of Egocentric Video for Lifelogging Applications, Journal of Visual Communication and Image Representation, 2017.

F. Ragusa, A. Furnari, S. Battiato, G. Signorello, G. M. Farinella. Egocentric Visitors Localization in Cultural Sites. In Journal on Computing and Cultural Heritage (JOCCH), 2019.

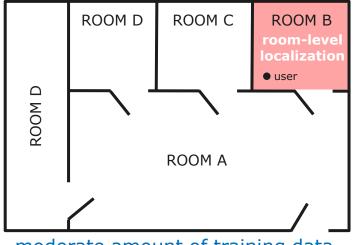
Università di Catania Room-Level Localization – Demo

Università di Catania Localization-based analysis


G. M. Farinella, G. Signorello, S. Battiato, A. Furnari, F. Ragusa, R. Leonardi, E. Ragusa, E. Scuderi, A. Lopes, L. Santo, M. Samarotto. VEDI: Vision Exploitation for Data Interpretation. In 20th International Conference on Image Analysis and Processing (ICIAP), 2019

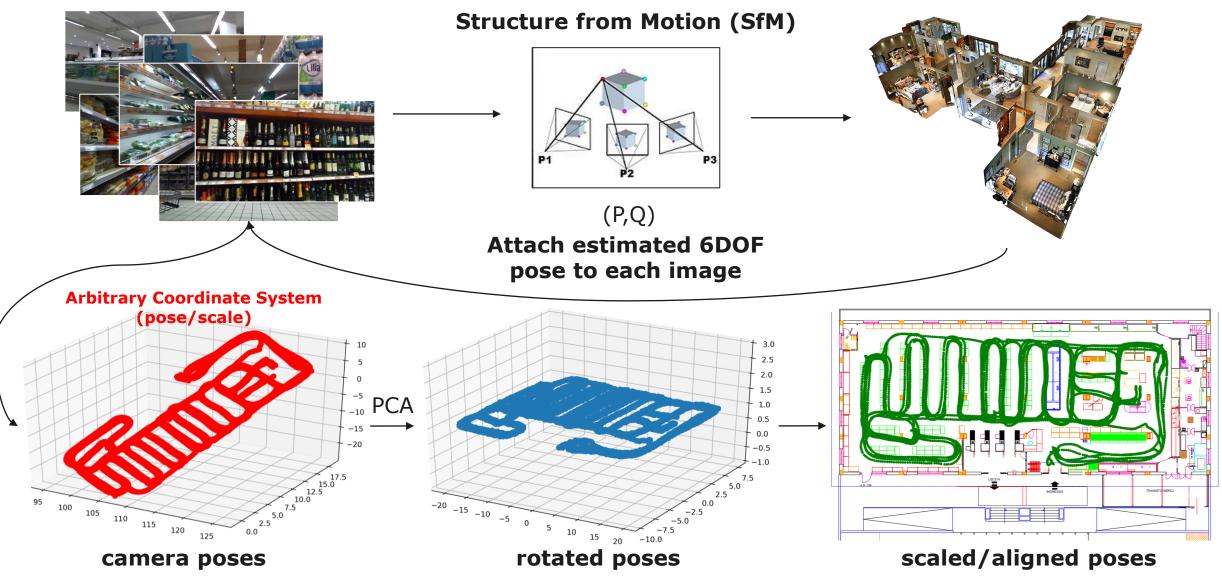

Università Localization – Levels of Granularity

SCENE RECOGNITION



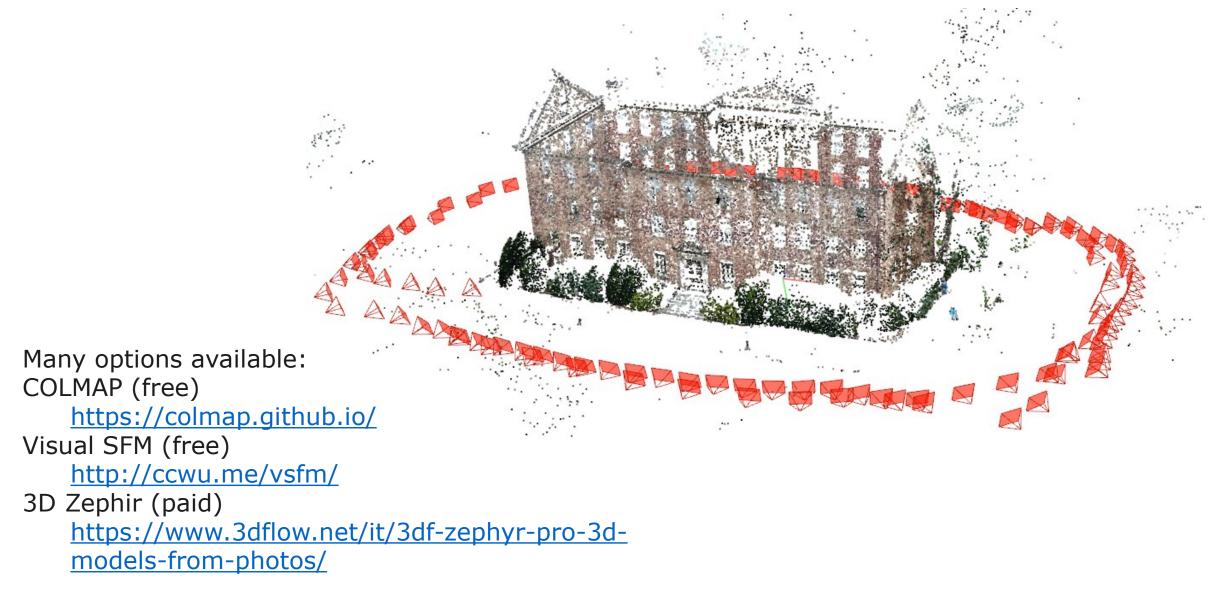
off-the-shelf detectors

ROOM-LEVEL RECOGNITION

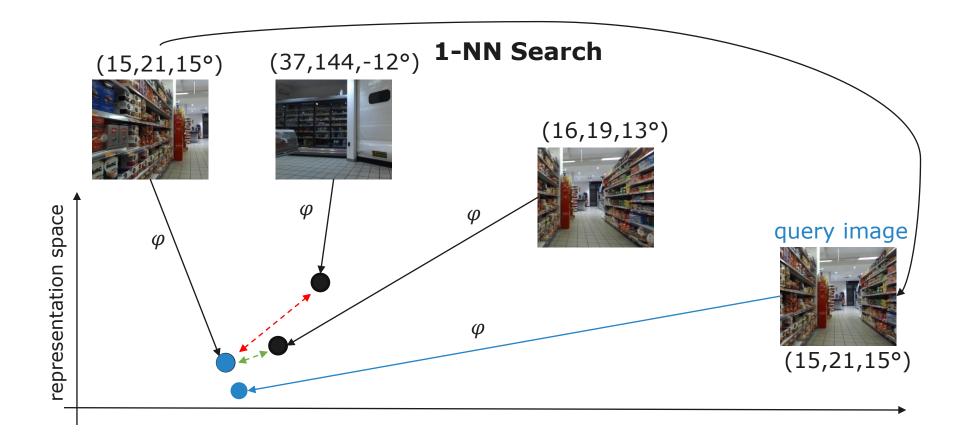


moderate amount of training data

Università di Catania Camera Pose Estimation – Dataset Creation


Images

3D Model


Università di Catania Camera Pose Estimation – Labeling

Structure from Motion attaches every input image to a 3D model.

Università di Catania Camera Pose Estimation – Retrieval Approach

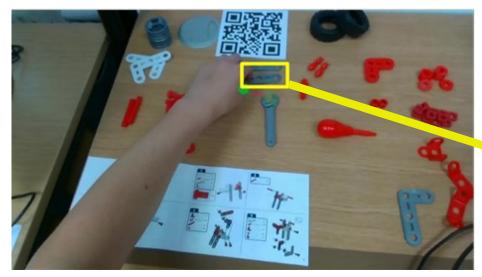
Use deep metric learning to <u>learn</u> a representation function φ which maps close to each other images of nearby locations

E. Spera, A. Furnari, S. Battiato, G. M. Farinella, Egocentric Shopping Cart Localization, International Conference on Pattern Recognition (ICPR), 2018 S. A. Orlando, A. Furnari, S. Battiato, G. M. Farinella. Image-Based Localization with Simulated Egocentric Navigations. VISAPP 2019

Università di Catania Visual Localization Literature is Rich!

Course Information

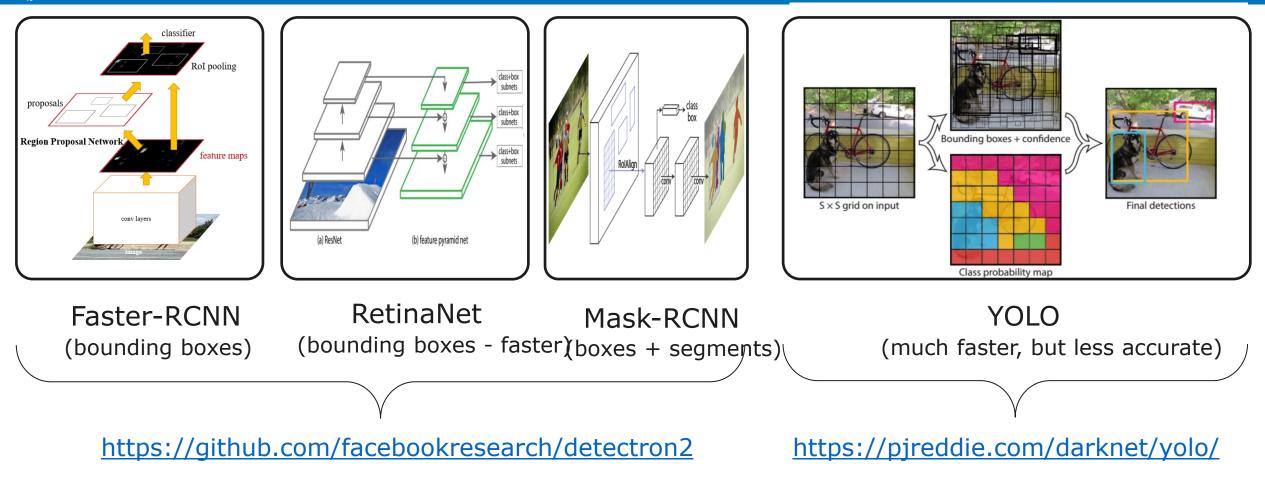
- When: Sunday, October 17th, 2021
- Where: Online at <u>https://youtu.be/RaVPiIGhdWk</u>
- Time: half-day tutorial starts at 2:30 pm CEST (ics)
- Preliminary Schedule
 - Part I: Image Retrieval for Coarse Localization (Giorgos, Yannis)
 - Image Retrieval & Visual Representation [50 min] (Giorgos) [slides]
 - Metric learning: knowledge transfer, data augmentation, and attention [20 min] (Yannis) [slides]


https://sites.google.com/view/lsvpr2021/home

()

Object Detection/Interaction

Università Object Detection

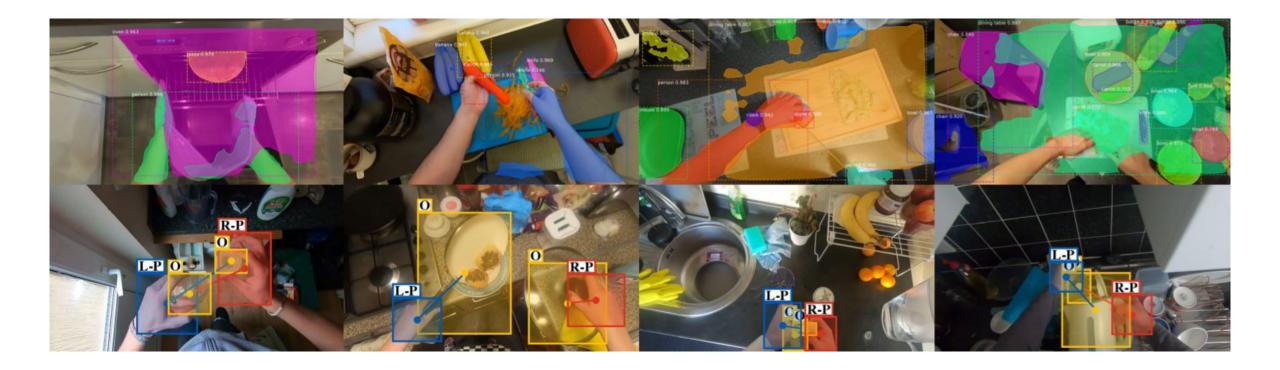

ID	Class	
0	instruction booklet	-
1	gray_angled_perforated_bar	
2	partial_model	
3	white_angled_penc_ated_bar	
4	wrench	
5	screwdriver	
6	gray_perforated_bar	
7	wheels_axle	
8	red_angled_perforated_bar	
9	red_perforated_bar	
10	rod	
11	handlebar	
12	screw	1
13	tire	
14	rim	
15	washer	
16	red_perforated_junction_oar	3
17	red_4_performed_junction_bar	2
18	bolt	
19	roller	

Objects and Actions are tight! Useful to know what is in the scene

Useful to know what actions can be performed

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023 (https://arxiv.org/abs/2209.08691).

Università Off-the-shelf object detectors



Transformer-Based Detectors: <u>https://github.com/IDEA-Research/awesome-detection-transformer</u>

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In *NIPS*. Joseph Redmon, Ali Farhadi, YOLO9000: Better, Faster, Stronger, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017, October). Mask r-cnn. In *Computer Vision (ICCV), 2017* (pp. 2980-2988). IEEE.

Depending on the scenario, off-the-shelf detectors can be a starting point, but they are not always accurate.

Damen, Doughty, Farinella, Furnari, Kazakos, Moltisanti, Munro, Price, Wray (2020). Rescaling Egocentric Vision. *arXiv preprint arXiv:2006.13256* (2020).

https://www.csee.umbc.edu/~hpirsiav/ papers/ADLdataset/

http://epic-kitchens.github.io/

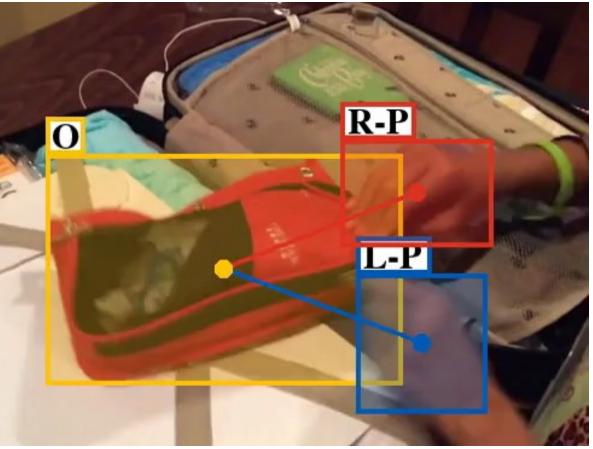
- In some scenarios, it could be necessary to fine-tune an objectdetector with applicationspecific data.
- Main egocentric datasets providing bounding box annotations.
- EGO4D is multi- domain annotated with 295K bounding boxes.

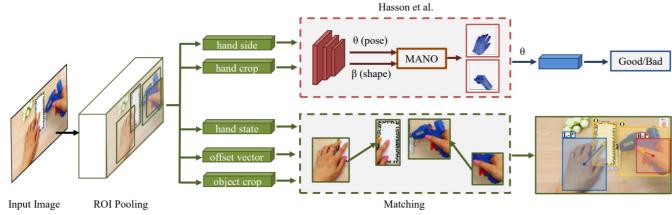
NEW EgoObjects! 114K annotated frames https://github.co m/facebookresea rch/EgoObjects

https://iplab.dmi.unict.it/EGO-CH/

https://iplab.dmi.unict.it/MECCANO/

Università Understanding human-object interactions (HOI)

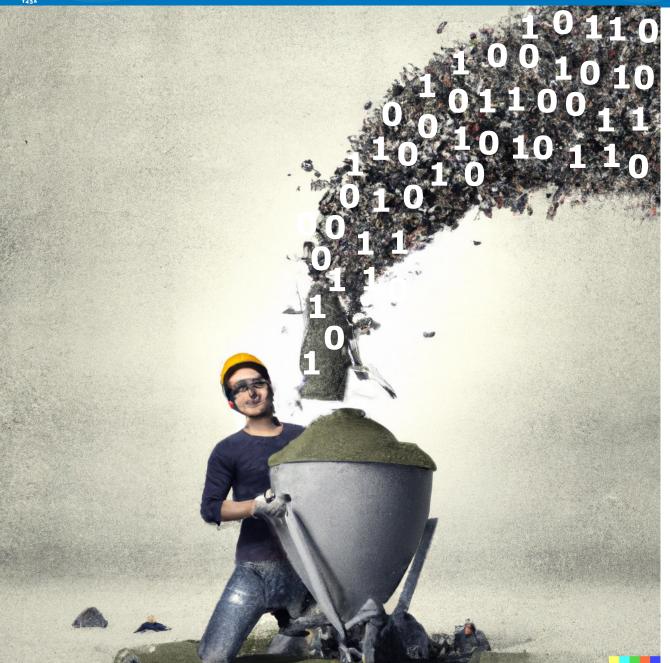

Hands Active Objects


Passive Objects

Università degli Studi di Catani

CODE & DATA HERE -> https://fouheylab.eecs.umich.edu/~dandans/projects/100DOH/

An «augmented» detector which recognizes:


- The left hand;
- The right hand;
- The interacted object.

Darkhalil, Ahmad, et al. "Epic-kitchens visor
 benchmark: Video segmentations and object
 relations." Advances in Neural Information
 Processing Systems 35 (2022): 13745-13758.

Shan, D., Geng, J., Shu, M., & Fouhey, D. F. (2020). Understanding human hands in contact at internet scale. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 9869-9878).

Università di Catania Standard approach – relies on huge quantities of real data

Standard approach:

- Collect a lot of images and videos of construction sites;
- Label the data with domain-specific annotations;
- Train and test deep learning algorithms.

Università di Catania Learning in simulation

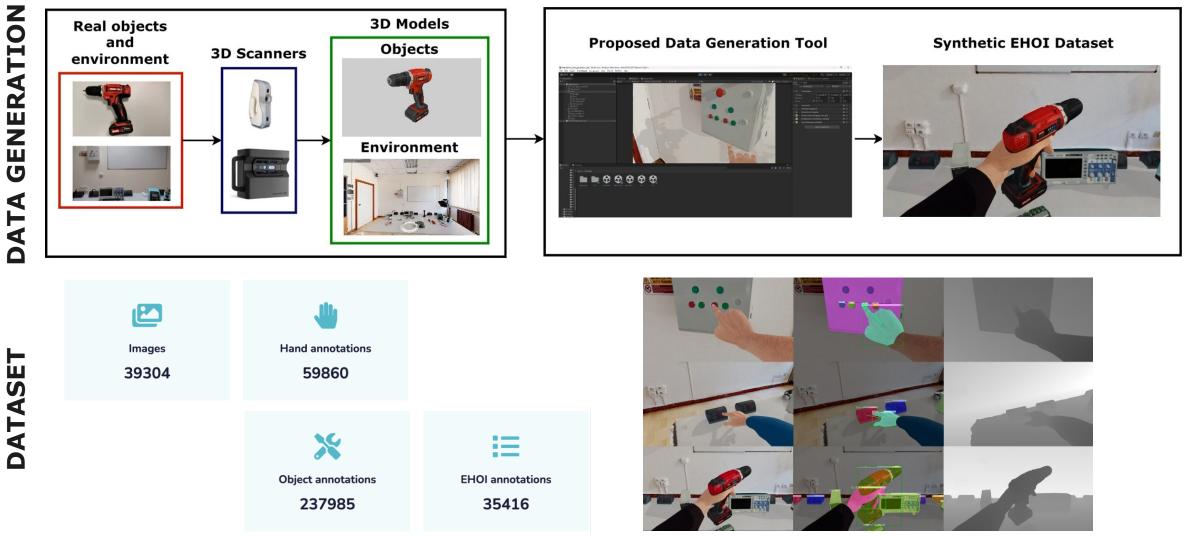
What if we could learn the «real thing» in simulation?

Università di Catania User-Object Interaction Synthetic Data Generation

DATA HERE -> <u>https://iplab.dmi.unict.it/EHOI_SYNTH/</u>

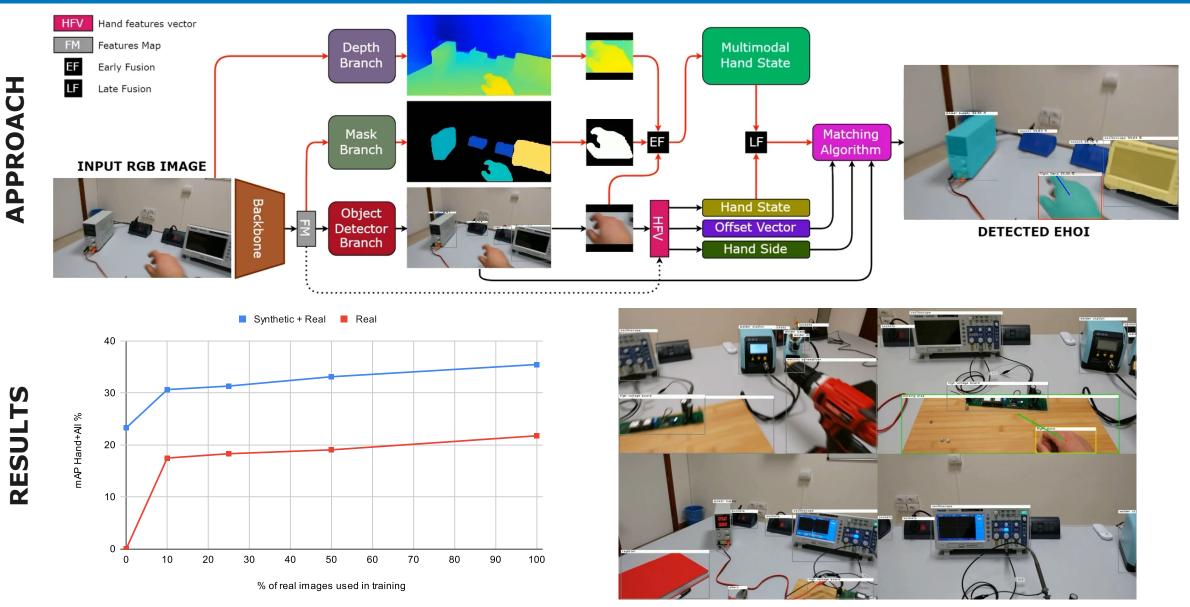
Can simulated data help?

ENIGMA Laboratory



Rosario Leonardi, Francesco Ragusa, Antonino Furnari, Giovanni Maria Farinella (2022). Egocentric Human-Object Interaction Detection Exploiting Synthetic Data . In International Conference on Image Analysis and Processing (ICIAP)

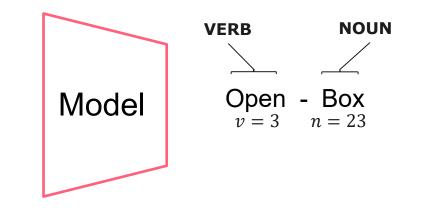
Università User-Object Interaction Synthetic Data Generation

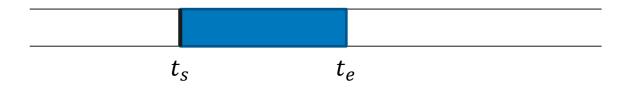

Virtual Replica of Real Environment

Rosario Leonardi, Francesco Ragusa, Antonino Furnari, Giovanni Maria Farinella (2022). Egocentric Human-Object Interaction Detection Exploiting Synthetic Data . In International Conference on Image Analysis and Processing (ICIAP)

Interaction Simulation

Università User-Object Interaction Synthetic Data Generation


Rosario Leonardi, Francesco Ragusa, Antonino Furnari, Giovanni Maria Farinella (2022). Egocentric Human-Object Interaction Detection Exploiting Synthetic Data . In International Conference on Image Analysis and Processing (ICIAP)



Action Recognition

"observe a trimmed segment denoted by start and end time and classify the action present in the clip"

As defined in EPIC-KITCHENS-2020

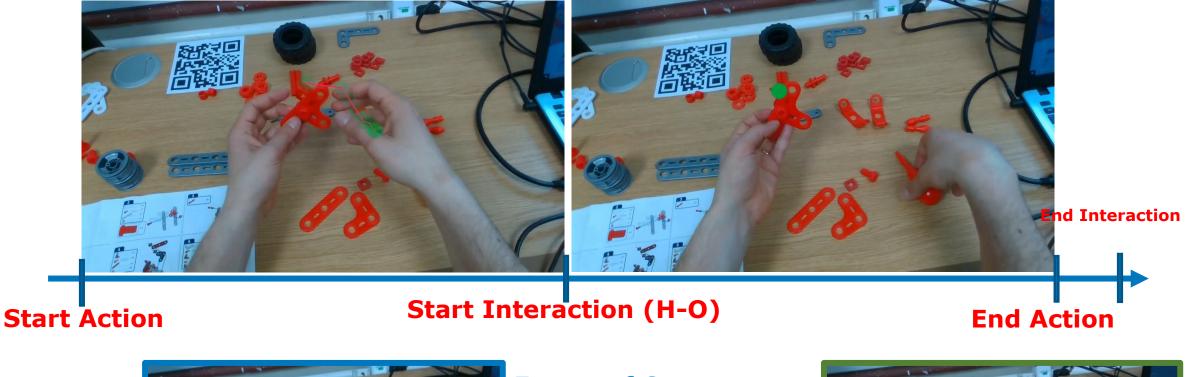
TAKE SCREWDRIVER

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Università Relation between Action and Interaction

TAKE SCREWDRIVER

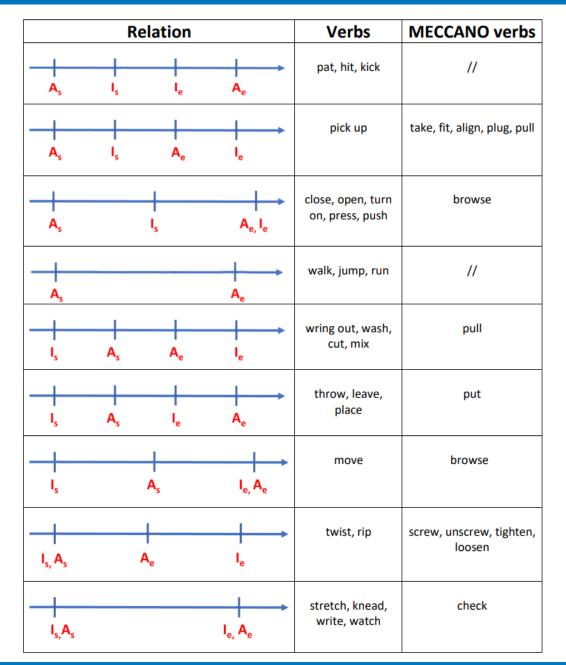
Start Action


Start Interaction (H-O)

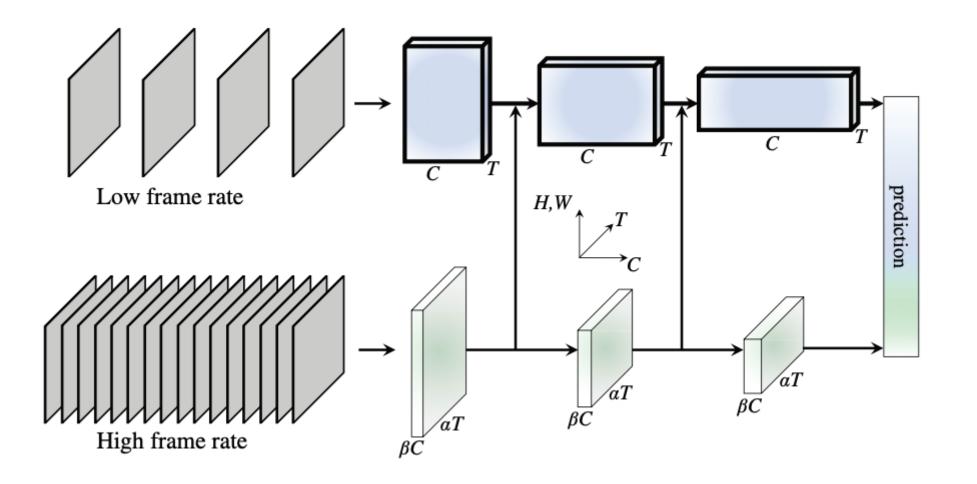
Frame of Contact

Università Relation between Action and Interaction

TAKE SCREWDRIVER

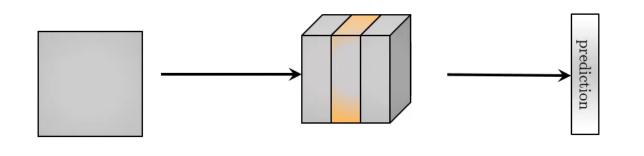

Frame of Contact

Frame of Decontact


Università Relation between Action and Interaction

F. Ragusa, A. Furnari, G. M. Farinella. MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain. Computer Vision and Image Understanding (CVIU), 2023.

Università di Catania SlowFast Networks for Video Recognition


CODE HERE -> https://github.com/facebookresearch/SlowFast

Feichtenhofer, C., Fan, H., Malik, J., & He, K. (2019). Slowfast networks for video recognition. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 6202-6211).

^{Università} X3D: Expanding Architectures for Efficient Video Recognition

CODE HERE -> <u>https://github.com/facebookresearch/SlowFast</u>

- X-Fast
- X-
 - Temporal
- X-Spatial
- X-Depth
- X-Width
- X-
 - Bottlenec
 - k

Feichtenhofer, C. (2020). X3D: Expanding Architectures for Efficient Video Recognition. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 200-210.

\equiv README.md

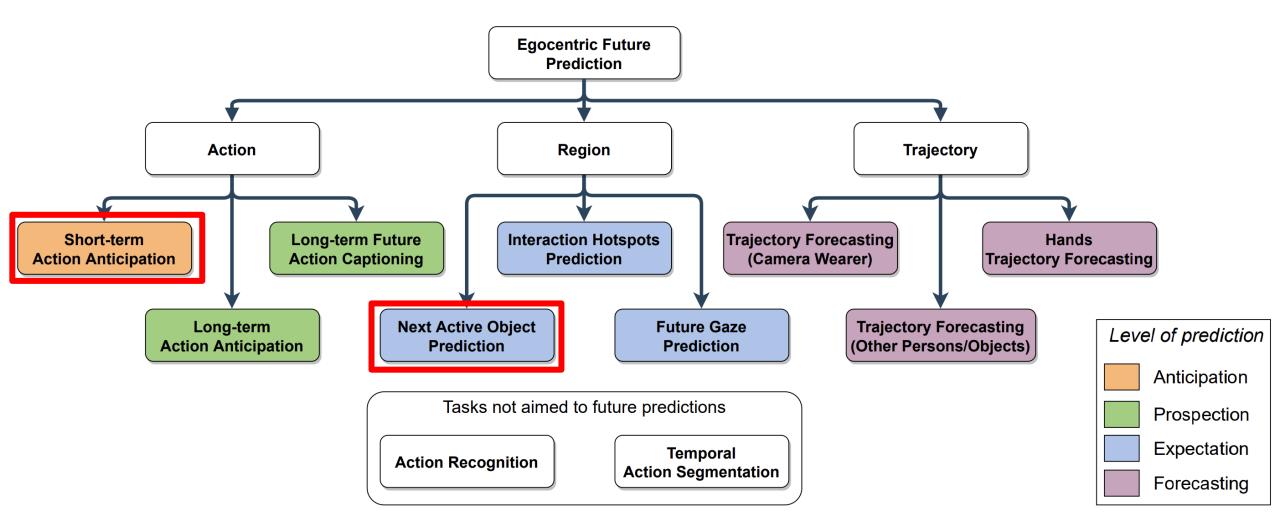
PySlowFast

PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficient training. This repository includes implementations of the following methods:

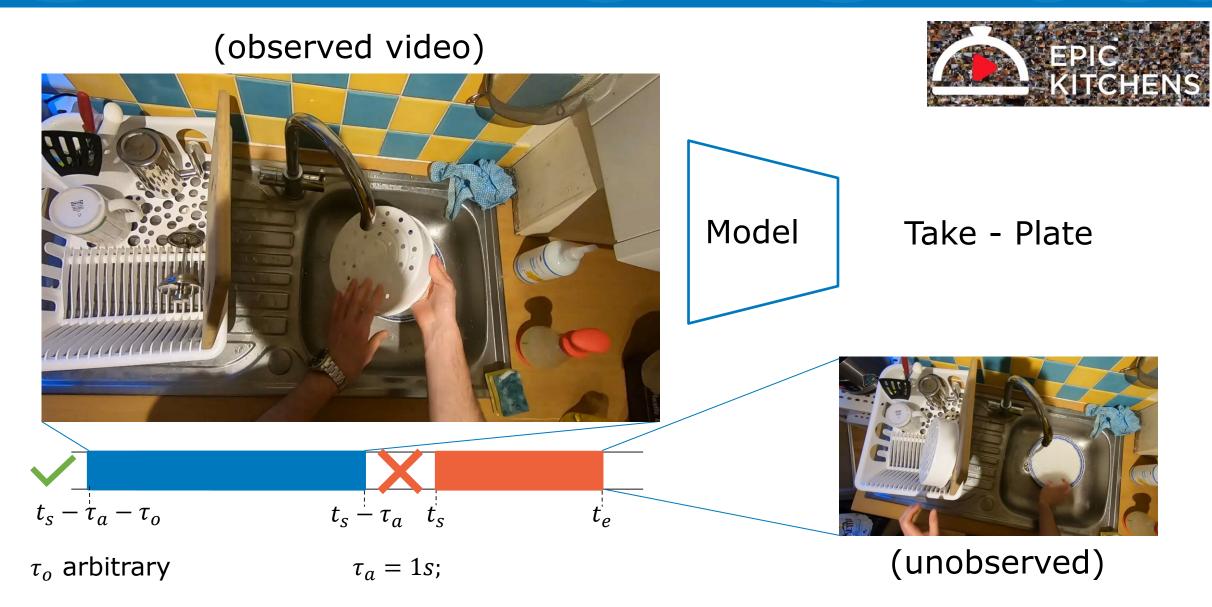
- SlowFast Networks for Video Recognition
- Non-local Neural Networks
- A Multigrid Method for Efficiently Training Video Models
- X3D: Progressive Network Expansion for Efficient Video Recognition
- Multiscale Vision Transformers
- A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning
- MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
- Masked Feature Prediction for Self-Supervised Visual Pre-Training
- Masked Autoencoders As Spatiotemporal Learners
- Reversible Vision Transformers

https://github.com/facebookresearch/SlowFast

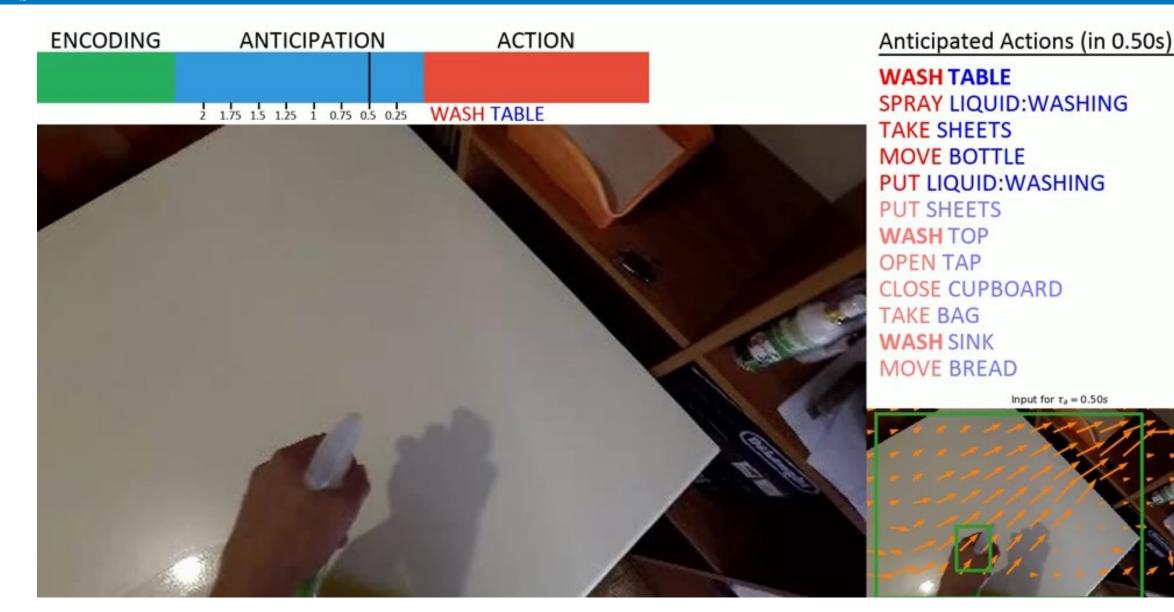
Anticipation


Università di Catania Personal assistants and Future Predictions

Intelligent assistants should be able to understand what are the user's goals and what is going to happen in the future.

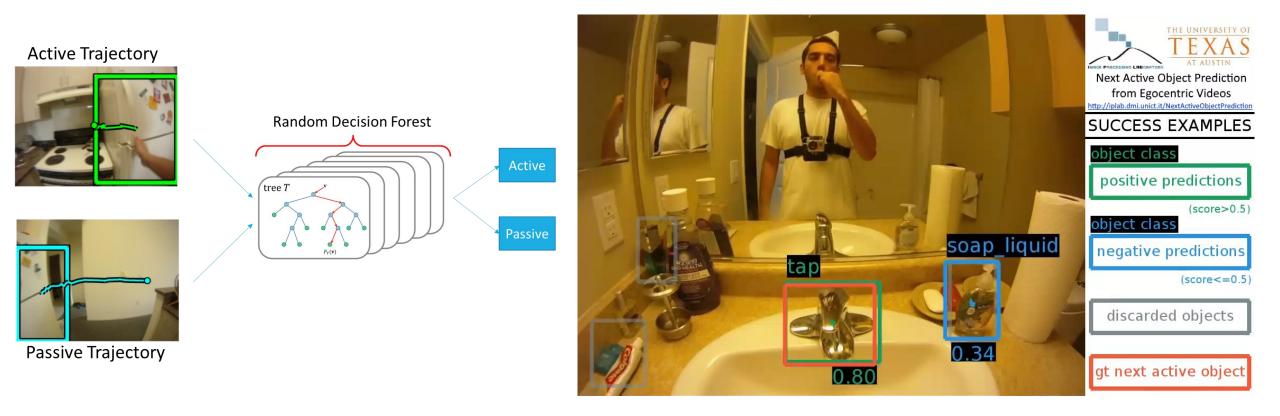


Università di Catania Future Predictions in Egocentric Vision

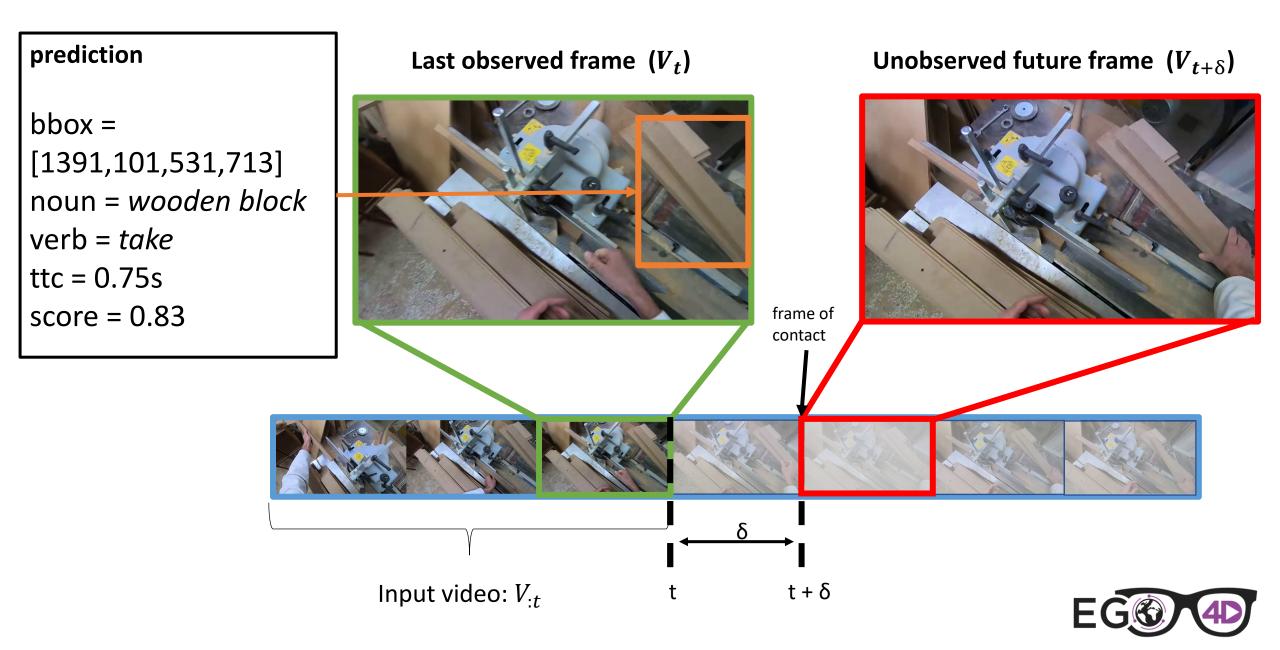

Ivan Rodin, Antonino Furnari, Dimitrios Mavroedis, Giovanni Maria Farinella (2021). Predicting the Future from First Person (Egocentric) Vision: A Survey. Computer Vision and Image Understanding, 211, pp. 103252.

Università di Catania Egocentric Action Anticipation Task

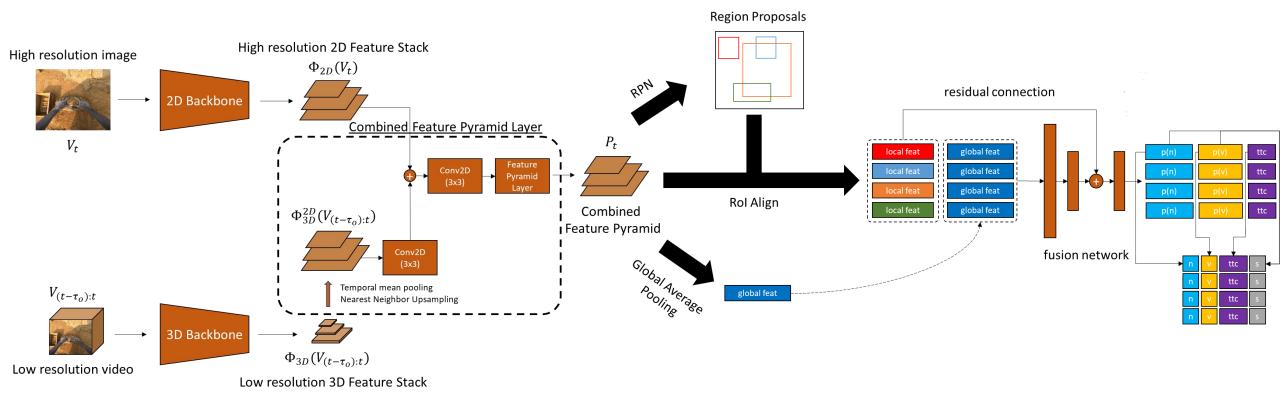
Damen, Dima, et al. "Scaling egocentric vision: The epic-kitchens dataset." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018. Dima Damen et al. Rescaling Egocentric Vision . International Journal on Computer Vision (IJCV). 2021


Università di Catania Demo Video: Egocentric Action Anticipation

A. Furnari, G. M. Farinella, What Would You Expect? Anticipating Egocentric Actions with Rolling-Unrolling LSTMs and Modality Attention. ICCV 2019 (ORAL). A. Furnari, G. M. Farinella. Rolling-Unrolling LSTMs for Action Anticipation from First-Person Video. TPAMI 2020. <u>http://iplab.dmi.unict.it/rulstm</u>


http://iplab.dmi.unict.it/NextActiveObjectPrediction/

Use egocentric object trajectories to distinguish passive from next-active-objects (i.e., those which will be used soon by the user).



A. Furnari, S. Battiato, K. Grauman, G. M. Farinella, Next-Active-Object Prediction from Egocentric Videos, Journal of Visual Communication and Image Representation, 2017

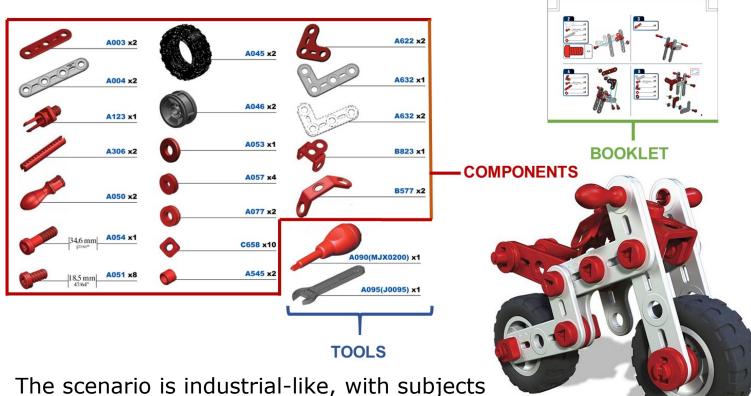
Università Catania Short-Term Object Interaction Anticipation

An end-to-end approach for predicting next-active-objects based on an 2D-3D backbone taking as input a high resolution image and a video clip.

Francesco Ragusa, Giovanni Maria Farinella, Antonino Furnari (2023). StillFast: An End-to-End Approach for Short-Term Object Interaction Anticipation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

Università StillFast Qualitative Results

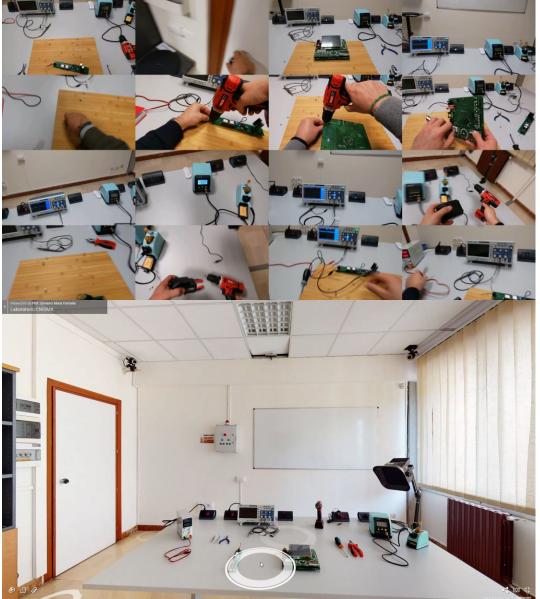
^{Università} Can we bring egocentric vision to industry?


- The factory is a natural place for a wearable assistant;
- Closed-world assumption;
- Current research has considered different scenarios;
- No datasets in industrial-like scenarios;

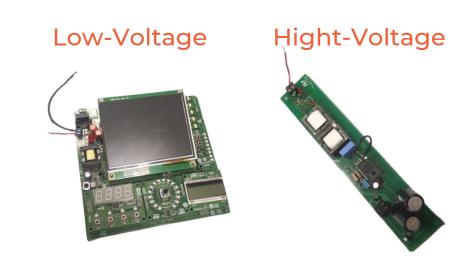
Data HERE -> <u>https://iplab.dmi.unict.it/MECCANO/</u>

We asked subjects to record egocentric videos while assembling a toy motorbike.

The assembly required to interact with several parts and two tools.



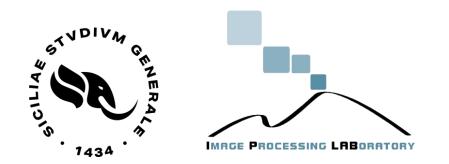
undertaking interactions with tiny objects tools in a sequential fashion to reach a goal.


Francesco Ragusa, Antonino Furnari, Salvatore Livatino, Giovanni Maria Farinella (2021). The MECCANO Dataset: Understanding Human-Object Interactions from Egocentric Videos in an Industrial-like Domain. In IEEE Winter Conference on Application of Computer Vision (WACV).

Università The ENIGMA-51 Dataset

We designed two procedures consisting of instructions that involve humans interacting with the objects present in the laboratory to achieve the goal of repairing two electrical boards

ENIGMA-51: Towards a Fine-Grained Understanding of Human Behavior in Industrial Scenarios. F. Ragusa R. Leonardi, M. Mazzamuto, C. Bonanno, R. Scavo, A. Furnari, G. M. Farinella. WACV (2024).



Industrial Applications

Spin-off of the University of Catania

Intelligent Navigation

Image-based Localization

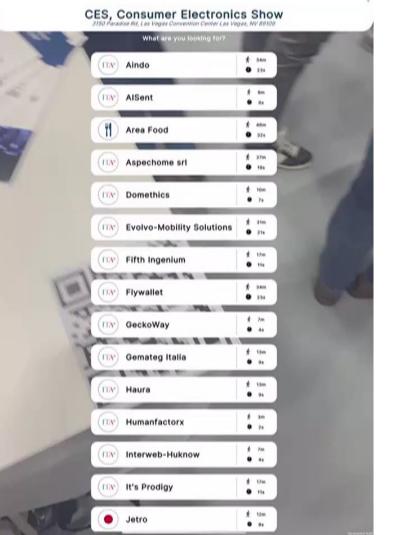
Augmented Reality

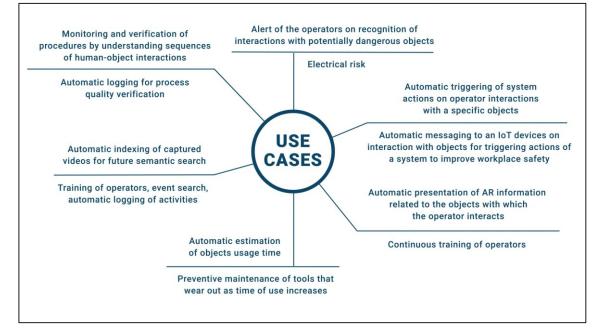
Multi-platform

<image>

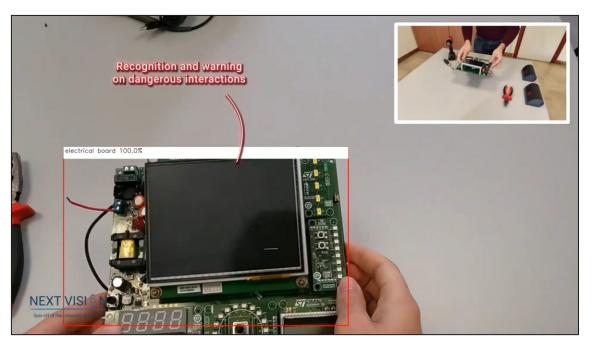
Founders of Next Vision are authors of <u>patents</u> related to the developed technologies

<u>https://drive.google.com/file/d/1lle4yF6b1kLp9P3yw</u> <u>qK0i77koTvn5OuE/view?usp=share_link</u>



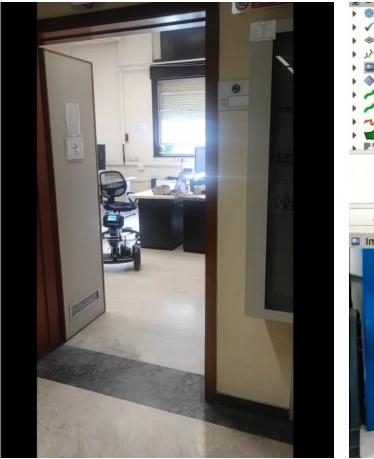

Università

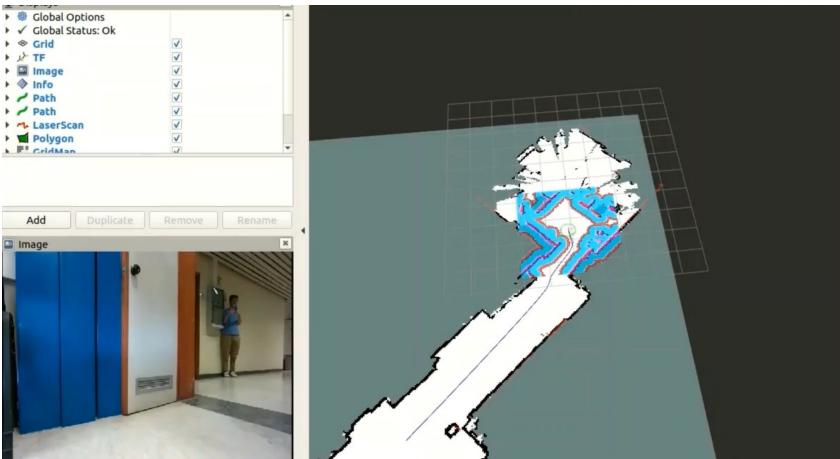
https://drive.google.com/file/d/1FAkLceBz wCkDCsAJFqnYBwFPZVciQV/view?usp=drive_link



• **NAOMI** is an AI Assistant able to support humans to monitor interactions, predict/anticipate next interactions, verify correctness in a sequence of interactions.

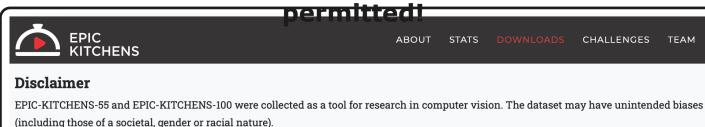
Use cases




The video shows an example of object interaction monitoring. The operator is notified on an interaction with a dangerous object.

https://drive.google.com/file/d/1oOvhVbyyR7AZ35I -V90Zy7RyRTR7lkD4/view?usp=drive_link

<u>https://drive.google.com/file/d/17XrD-</u> syy7pUm5MO4WYm7ZZxgRQsbSl2M/view?usp=drive_link



Doing Research in Egocentric Vision: Where to start?

Data nowadays carries a lot of privacy/social/economic implications, so modern datasets are usually licensed.

! pay attention to which uses are

All datasets and benchmarks on this page are copyright by us and published under the Creative Commons Attribution-NonCommercial 4.0 International License. This means that you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.

For commercial licenses of EPIC-KITCHENS and any of its annotations, email us at uob-epic-kitchens@bristol.ac.uk

EGO4D License Agreement

Obtaining the dataset or any annotations requires you first review our license agreement and accept the terms. Go here (ego4ddataset.com) to review and execute this agreement, and you will be emailed a set of AWS access credentials when your license agreement is approved, which will take ~48hrs. In the meantime, you can check out data overview & sample notebooks here to get familiar with the dataset, and can download the CLI & dataloaders to get setup in advance.

Note that licenses have the option to execute our license agreements as either an individual or on behalf of your institution. You will likely sign the license as an individual. Typically, only institutional signatories at a director or executive level can agree to license terms on behalf of an entire organization.

Also note that once approved your access credentials will expire in 14 days - you're expected to download the data locally, not to consume it from AWS. You can easily renew your license once it expires though: license renewal FAQ

This information you enter below will be used to generate a data usage agreement. You will receive an email from HelloSign which will step you through the process of signing all the agreements. You can review the data usage agreement at -

http://ego4d.github.io/pdfs/Ego4D-Licenses-Draft.pdf

Note: Only official signatories can sign as organisation

 Individual 		C	 Organization 				
First name		Last name					
Email							
Home Address							
City	State / Province / Co	unty	Country				
	Sub	Submit					

Università di Catania Accessing Modern Datasets – Command Line Interfaces

Download only certain data types

Will download only videos from P01, P02 and P03

https://github.com/epic-kitchens/epic-kitchens-download-scripts

We provide videos, RGB/optical flow frames, GoPro's metadata (for the extension only) and ob frames (for EPIC KITCHENS-55's videos only). You can also download the consent form temple	
If you want to download only one (or a subset) of the above, you can do so with the following s arguments: •videos	elf-explanatory
 rgb-frames 	
 flow-frames 	
 object-detection-images 	
•masks	
•metadata	
•consent-forms	
If you want to download only videos, then:	
python epic_downloader.pyvideos	C
Note that these arguments can be combined to download multiple things. For example:	
python epic_downloader.pyrgb-framesflow-frames	9
Will download both RGB and optical flow frames.	
Specifying participants	
You can use the argument <u>participants</u> if you want to download data for only a subset of the Participants can be specified with their numerical <i>or</i> string ID.	participants.
You can specify a single participant, e.gparticipants 1 orparticipants P01 for particip a comma-separated list of them, e.gparticipants 1,2,3 orparticipants P01,P02,P03 for participants P01, P02 and P03	
This argument can also be combined with the aforementioned arguments. For example:	
<pre>python epic_downloader.pyvideosparticipants 1,2,3</pre>	P

Modern datasets are HUGE!

- EPIC-KITCHENS ~ 796 GB
- EGO4D ~ 30+ TB

Data download

eqo4d/cl

Canonical videos and annotations can be downloaded using the following command:

python -m ego4d.cli.cli --output directory="~/ego4d data" --datasets full scale annotations --benchmarks FHO

v2.0 annotations can be downloaded with:

python -m ego4d.cli.cli --output_directory="~/ego4d_data" --datasets annotations --version v2

v2.0 amiliota	tions can be downloaded with:
python —m Detailed Flags	<pre>ego4d.cli.clioutput_directory="~/ego4d_data" -</pre>
Flag Name	Description
dataset	[Required] A list of identifiers to download: [annotations, full_scale, clips] Each dataset will be stored in for the output directory with the name of the dataset (e.g. output_dir/v2/full_scale/) and manifest.
 output_directory	[Required]A local path where the downloaded files and metadata will be stored
metadata	[Optional] Download the primary ego4d.json metadata at the top level (Default: True)
benchmarks	[Optional] A list of benchmarks to filter dataset downloads by - e.g. Narrations/EM/FHO/AV
-yyes	[Optional] If this flag is set, then the CLI will not show a prompt asking the user to confirm the download. so that the tool can be used as part of shell scripts.
 aws_profile_name	[Optional] Defaults to "default". Specifies the AWS profile name from ~/.aws/credentials to use for the dow
video_uids	[Optional] List of video or clip UIDs to be downloaded. If not specified, all relevant UIDs will be downloaded
 video_uid_file	[Optional] Path to a whitespace delimited file that contains a list of UIDs. Mutually exclusive with the video_uids flag.
universities	[Optional] List of university IDs. If specified, only UIDs from the S3 buckets belonging to the listed universi will be downloaded.
version	[Optional] A version identifier - e.g. "v1" or "v2" (default)
no-metadata	[Optional] Bypass the ego4d.json metadata download
config	[Optional] Local path to a config JSON file. If specified, the flags will be read from this file instead of the command line

Dataset	Description
annotations	The full set of annotations for the majority of benchmarks.
full_scale	The full scale version of all videos. (Provide benchmarks or video_uids filters to reduce the 5TB download size.)
clips	Clips available for benchmark training tasks. (Provide benchmarks or video_uids filters to reduce the download size.)
video_540ss	The downscaled version of all videos - rescaled to 540px on the short side. (Provide benchmarks or video_uids filters to reduce the STB download size.)
annotations_540ss	The annotations corresponding to the downscaled video_548ss videos - primarily differing only in spatial annotations (e.g. bounding boxes).
3d	Annotations for the 3D VQ benchmark.
3d_scans	3D location scans for the 3D VQ benchmark.
3d_scan_keypoints	3D location scan keypoints for the 3D VQ benchmark.
imu	IMU data for the subset of videos available
slowfast8x8_r101_k400	Precomputed action features for the Slowfast 8x8 (R101) model
omnivore_video_swinl	Precomputed action features for the Omnivore Video model
omnivore_image_swinl	Precomputed action features for the Omnivore Image model
fut_loc	Images and annotations for the future locomotion benchmark.
av_models	Model checkpoints for the AV/Social benchmark.
lta_models	Model checkpoints for the Long Term Anticipation benchmark.
moments_models	Model checkpoints for the Moments benchmark.
nlq_models	Model checkpoints for the NLQ benchmark.
sta_models	Model checkpoints for the Short Term Anticipation benchmark.
vq2d_models	Model checkpoints for the 2D VQ benchmark.

Command Line Interfaces Provided to Simplify Download

Università di Catania Lots of Tasks Out There – Challenges!

ABOUT STATS DOWNLOADS CHALLENGES TEAM

Ego4D Challenge 2023

EPIC-KITCHENS-100 2023 CHALLENGES

Challenge Details with links to ★NEW★ Codalab Leaderboards

New leaderboards are now open for the challenge phase from Mon Jan 2023. Check the results of the 2022 chalenge results below

In 2023, we have 9 open challenges. These are

- New Semi-Supervised Video Object Segmentation Challenge
- New Hand-Object Segmentation Challenge
- New TREK-150 Object Tracking Challenge
- New EPIC-SOUNDS Audio-Based Interaction Recognition
- Action Recognition
- Action Detection
- Action Anticipation
- UDA for Action Recognition
- Multi-Instance Retrieval

EPIC-Kitchens 2023 Challenges

Jan 23rd 2023,	All leaderboards are open (note new challenges for 2023)
June 1st 2023,	Server Submission Deadline at 23:00:00 UTC
June 6th 2023,	Deadline for Submission of Technical Reports on CMT
Mon June 19 2023,	Results announced at 11th EPIC@CVPR2023 workshop in Vancouver 11th EPIC@CVPR2023 workshop i
	Vancouver

Challenges Guidelines

The **nine** challenges below and their test sets and evaluation servers are available via CodaLab. The leaderboards will decide the winners for each individual challenge. For each challenge, the CodaLab server page details submission format and evaluation metrics.

This year, we offer **four** new challenges in: Semi-Supervised Video Object Segmentation using the VISOR annotations, Hand-object-segmentations using the VISOR annotations, single-object tracking and audio-based action recognition using the epic-sounds dataset.

https://epic-kitchens.github.io/2023#challenges

Episodic memory:

- Visual queries with 2D localization (VQ2D) and Visual Queries 3D localization (VQ3D): Given an
 egocentric video clip and an image crop depicting the query object, return the most recent occurrence
 of the object in the input video, in terms of contiguous bounding boxes (2D + temporal localization) or
 the 3D displacement vector from the camera to the object in the environment.
 Quickstart: Open In Collab
- Natural language queries (NLQ): Given a video clip and a query expressed in natural language, localize the temporal window within all the video history where the answer to the question is evident.
 Quickstart: CO Open in Colab
- Moments queries (MQ): Given an egocentric video and an activity name (e.g., a "moment"), localize all
 instances of that activity in the past video
- EgoTracks: Given an egocentric video and a visual template of an object, localize the bounding box containing the object in each frame of the video along with a confidence score representing the presence of the object. [NEW for 2023]
- PACO Zero-Shot: Retrieve the bounding box of a specific object instance from a dataset, based on a textual query describing the instance. Query is composed using object and part attributes describing the object of interest. [NEW for 2023]

Hands and Objects:

- Temporal localization: Given an egocentric video clip, localize temporally the key frames that indicate an object state change.
- Object state change classification: Given an egocentric video clip, indicate the presence or absence of an object state change.

Audio-Visual Diarization:

- Audio-visual speaker diarization: Given an egocentric video clip, identify which person spoke and when they spoke.
- Speech transcription: Given an egocentric video clip, transcribe the speech of each person.

Social Understanding:

- Talking to me: Given an egocentric video clip, identify whether someone in the scene is talking to the camera wearer.
- Looking at me: Given an egocentric video clip, identify whether someone in the scene is looking at the camera wearer.

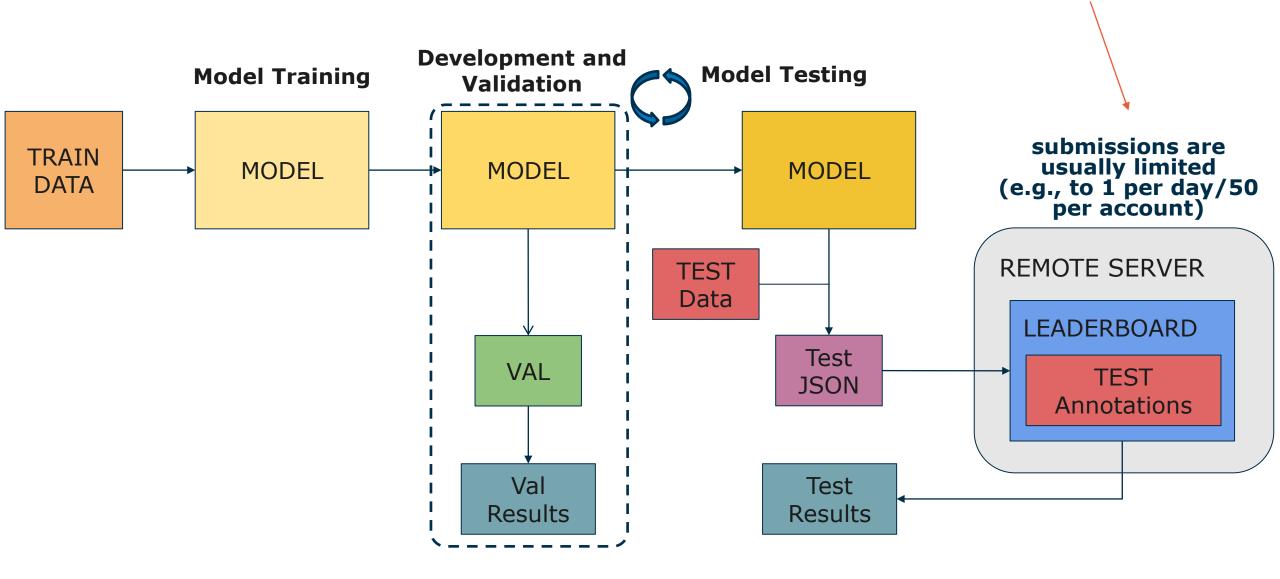
Forecasting:

in

- Short-term hand object prediction: Given a video clip, predict the next active objects, and, for each of them, predict the next action, and the time to contact.
 Quickstart: CO Open in Colab
 - Quickstart: O open collab
- Long-term activity prediction: Given a video clip, the goal is to predict what sequence of activities will
 happen in the future. For example, after kneading dough, list the actions that the baker will do next.

https://ego4d-data.org/docs/challenge/

Università di Catania Challenges – Train/Val/Test scheme


- Datasets are usually divided into train/val/test splits;
- All videos are publicly released;
- <u>Train</u> annotations are publicly released and meant for training models for the different challenges;
- <u>Val</u> annotations are publicly released and meant for model development and hyperparameter search;
- <u>Test</u> annotations are <u>private</u> and meant for assessing the performance of models <u>avoiding bias</u> in model design and optimization;
- Hence, the <u>only way</u> to obtain results on the test set is to send model predictions to an evaluation server.

TRAIN

VAL

TEST

Università di Catania Challenges – Evaluation Server

EPIC-KITCHENS-1	100 Action	Anticipation
------------------------	------------	--------------

Organized by antonino - Current server time: Aug. 22, 2023, 9:44 a.m. UTC

► Current	End
2023 Open Testing Phase	
June 27, 2023, 8 a.m. UTC	Nov. 25, 2023, 11 p.m. UTC

Test Set (Mean Top-5 Recall)																
	User	Entries	ies Date of Team Name		SLS			Overall (%)		Unseen (%)			Tail (%)			
			Last Entry		РТ	TL A	TD	Verb 🔺	Noun	Action	Verb 🔺	Noun ▲	Action	Verb 🔺	Noun ▲	Action
1	latent	29	10/18/22	InAViT IHPC-AISG- LAHA	1.0 (2)	3.0 (2)	3.0 (2)	49.14 (1)	49.97 (1)	23.75 (1)	44.36 (1)	49.28 (1)	23.49 (1)	43.17 (1)	39.91 (1)	18.11 (1)
2	hrgdscs	7	06/01/22		2.0 (1)	3.0 (2)	3.0 (2)	37.91 (4)	41.71 (2)	20.43 (2)	27.94 (4)	37.07 (2)	18.27 (2)	32.43 (4)	36.09 (2)	17.11 (2)
3	corcovadoming	28	06/01/22	NVIDIA- UNIBZ	1.0 (2)	3.0 (2)	4.0 (1)	29.67 (10)	38.46 (4)	19.61 (3)	23.47 (8)	35.25 (4)	16.41 (3)	23.48 (10)	31.11 (6)	16.63 (4)
4	shawn0822	22	06/01/22	ICL-SJTU	2.0 (1)	4.0 (1)	4.0 (1)	41.96 (3)	35.74 (5)	19.53 (4)	33.35 (3)	26.80 (13)	15.85 (5)	41.01 (3)	33.22 (4)	16.87 (3)
5	PCO-PSNRD	7	05/30/22	PCO- PSNRD	2.0 (1)	4.0 (1)	3.0 (2)	30.85 (6)	41.32 (3)	18.68 (5)	25.65 (6)	35.39 (3)	16.32 (4)	24.99 (6)	35.40 (3)	16.14 (5)
6	allenxuuu	1	12/20/21	2021 Open Testing Phase	2.0 (1)	4.0 (1)	4.0 (1)	29.88 (9)	30.40 (15)	17.35 (6)	25.08 (7)	26.08 (14)	14.14 (6)	24.60 (7)	23.68 (12)	14.30 (7)
7	Shawn0822-ICL- SJTU	1	12/20/21	2021 Open Testing Phase	1.0 (2)	4.0 (1)	3.0 (2)	42.32 (2)	34.60 (6)	17.02 (7)	33.36 (2)	25.94 (16)	12.84 (8)	42.47 (2)	31.37 (5)	15.56 (6)
8	shef-AVT-FB-UT	1	12/20/21	2021 Open Testing Phase	2.0 (1)	4.0 (1)	4.0 (1)	26.69 (13)	32.33 (10)	16.74 (8)	21.03 (12)	27.64 (7)	12.89 (7)	19.28 (13)	24.03 (10)	13.81 (8)
9	richard61	8	05/31/22		2.0 (1)	4.0 (1)	4.0 (1)	27.60 (11)	32.45 (9)	16.68 (9)	20.10 (14)	28.13 (5)	12.42 (11)	20.12 (12)	23.89 (11)	13.80 (10)
10	Zeyun-Zhong	12	06/01/22	KIT-IAR- IOSB	1.0 (2)	4.0 (1)	3.0 (2)	30.03 (8)	33.45 (8)	16.65 (10)	23.16 (9)	27.20 (8)	12.63 (10)	23.65 (9)	26.86 (9)	13.80 (9)
11	AVT-FB-UT	1	12/15/21	CVPR 2021 Challenges	2.0 (1)	4.0 (1)	4.0 (1)	25.25 (16)	32.04 (12)	16.53 (11)	20.41 (13)	27.90 (6)	12.79 (9)	17.63 (15)	23.47 (13)	13.62 (11)

1

2

3

4

5

6

Ego4D Short Term Object Interaction Anticipation Challenge .

† 11

Toggle

Participation

Organized by: Ego4D Published 👁 Starts on: Oct 25, 2022 2:00:00 AM CET (GMT + 2:00) 🖋 Ends on: May 20, 2024 2:00:59 AM CET (GMT + 2:00) 🖋

Discuss Leaderboard Overall Top-5 mAP Phase: Test Phase, Split: Test Split -Order by metric -* - Private Include private submissions B - Baseline V - Verified Rank Noun Noun_Verb Noun_TTC Overall Last submission Meta Participant team 🛊 (1) \$ (1) 🛊 (1) 🛊 (1) \$ \Rightarrow at 🌲 Attributes PAVIS (GANO_v2) 25.67 13.60 9.02 5.16 3 months ago Host_47324_Team (V2 StilFast 9.14 5.12 25.06 13.29 5 months ago Baseline) Host_47324_Team (V2 Faster RCNN 9.45 26.15 8.69 3.61 5 months ago + SlowFast Base) FPV_UNICT (StillFast) 19.51 9.95 6.45 3.49 11 months ago Red Panda (fusion-1) 24.60 9.19 7.64 3.40 11 months ago Host_47324_Team (Faster RCNN + 6.78 6.17 20.45 2.45 1 year ago SlowFast Baselin)

https://codalab.lisn.upsaclay.fr/competitions/702

https://eval.ai/web/challenges/challenge-page/1623/leaderboard/3910

- First Person Vision paves the way to a variety of usercentric applications;
- However, we are still missing solid building blocks related to fundamental problems of First Person Vision such as action recognition, object detection, action anticipation and human-object interaction detection;
- Consumer devices are starting to appear, but the near future of First Person Vision is in focused applications such as the ones in industrial scenarios.

<u>francesco.ragusa@unict.it –</u> <u>fragusa@nextvisionab.it</u>

Francesco Ragusa

First Person Vision@Image Processing Laboratory - http://iplab.dmi.unict.it/fpv

Next Vision - http://www.nextvisionlab.it/

Department of Mathematics and Computer Science - University of Catania

francesco.ragusa@unict.it - https://francescoragusa.github.io/

